



# Croptime

## online vegetable scheduling

http://smallfarms.oregonstate.edu/croptime

Nick Andrews<sup>+</sup>, Heidi Noordijk, Len Coop, Aaron Heinrich and Dan Sullivan <sup>+</sup>OSU Small Farms Extension North Willamette Research & Extension Center <u>nick.andrews@oregonstate.edu</u>

Other collaborators Jim Myers Heather Stoven Jeremy Cowan (WSU)

503-913-9410

# Endotherms

Metabolic heat maintains high body temperature

# Ectotherms

# Body temperature is close to environmental temperature



Codling moth



# Plants are primarily ectothermic

- Metabolism and rate of development is strongly influenced by temperature
- Temperature & time (degreedays) are useful for predicting development
- Some plants can generate some heat from metabolism

# René A. F. de Réaumur (1683-1757)

- Used daily mean temperatures to predict plant development in mid 18<sup>th</sup> Century
- The importance of threshold temperatures was recognized by mid-20<sup>th</sup> Century (i.e. Arnold, 1959)
- Threshold temperatures are low or high temperatures that limit development and growth



Tmax + Tmin

## Area under sine curve & between thresholds = degree-days



# Using degree-days David Brown, Mustard Seed Farm



"I have used degree days for over 20 years to schedule successive plantings of vegetables.

I have made some educated guesses... (but) having more information, based on some research, would be helpful in refining my schedules and maybe even using the information for more crops."

# Frank Morton, Wild Garden Seed



"The 'days to maturity' varietal information available in most seed catalogs is not useful to farmers, except in a vague relative sense.

If seed breeders and catalogs could provide degree-day information for their vegetable varieties, farmers would be able to more accurately model their crop delivery schedules in years of unusual weather patterns or extremes."

Photo by Shawn Linehan

# Growers helped us prioritize crops

# Fruiting Crops

(number of varieties)

- Snap beans (3)
- Tomato (5)
- Summer squash (5)
- Cucumber (4)
- Sweet pepper (7)
- Winter squash (4)
- Sweet corn (6)







# Root Crops

(number of varieties)

- Carrot (3)
- Parsnip (4)





# Brassicas (number of varieties)

- Broccoli (4)
- Cabbage (6)
- Cauliflower (3)
- Kale (2)



# Leafy Crops

(number of varieties)

- Lettuce (4)
- Spinach (3)





# Collecting field data

# Growth stages and descriptions

# Monitoring

- Once per week
  - 2013
  - 2014
  - 2015
- Record growth stage
- Ask us if your not sure

#### Growth Stage

**Direct Seed** 

Germination

Transplant

Number of true leaves

Cupping

**Head initiation** 

**Head development** 

**First harvest** 

Ongoing harvest

End of harvest period



## Growth Stage Guide

| CONTENTS      |  |
|---------------|--|
| PLEASE READ2  |  |
| AMARANTHACEAE |  |
| Spinach5      |  |
| APIACEAE      |  |
| Carrot        |  |
| ASTERACEAE    |  |
| Head Lettuce  |  |
| BRASSICACEAE  |  |
| Broccoli      |  |
| Cauliflower   |  |
| Cabbage       |  |
| Kale          |  |
| CUCURBITACEAE |  |
| Cucumber      |  |
| Summer Squash |  |
| Winter Squash |  |
| FABACEAE27    |  |
| Snap beans    |  |
| POACEAE       |  |
| Sweet corn    |  |
| SOLANACEAE    |  |
|               |  |
| Pepper        |  |

## Broccoli

#### BRASSICACEAE

#### BROCCOLI AND CAULIFLOWER

| Growth Stage             | BBCH #  | Description                                                                                                                                                                                                                                                                                                                             |
|--------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Direct Seed              | 000     | Note the seeding date if direct seeded in the field.                                                                                                                                                                                                                                                                                    |
| Germination              | 001-009 | 001 = seed can imbibe water due to soil moisture,<br>irrigation or priming (this may be the same as direct seed<br>date), 009 = cotyledons emerge from the soil, estimate<br>percent of crop emerged.                                                                                                                                   |
| Transplant               | 102-104 | Record the transplanting date and the number of true leaves at transplanting if appropriate.                                                                                                                                                                                                                                            |
| Number of true<br>leaves | 100-114 | Count number of fully unfolded true leaves. 100 =<br>cotyledons completely unfolded, 101 = first true leaf<br>unfolded, 110 = 10 true leaves unfolded.                                                                                                                                                                                  |
| Cupping                  | 150     | The innermost heart leaves curve around the growing tip<br>where the head will initiate. The innermost heart leaves,<br>which are still growing in an upright fashion, are concealed<br>by the larger, older leaves surrounding them.<br>Approximately 12-16 leaves.                                                                    |
| Head initiation          | 400     | The harvestable head is visibly initiating on median plant.<br>Head can be felt without destroying leaves (1/2"<br>diameter). Head initiation can be detected destructively at<br>a smaller diameter by cutting away leaves. Head initiation<br>normally occurs at about 14-18 true leaves and earlier in<br>broccoli than cauliflower. |
| Head development         | 401-409 | Measure the diameter across the main head on each plant<br>you examine. Use the average diameter from two<br>measurements at a 90° angle to each other, for example:<br>Record median head diameter. 402 = 2" diameter, 406 = 6"<br>diameter.                                                                                           |
| First harvest            | 424-428 | Record date and head diameter at first harvest. First<br>harvest varies by variety. 424 = first harvest with 4"<br>median head diameter, 428 = first harvest with 8" head<br>diameter.                                                                                                                                                  |
| Ongoing harvest          | 460     | Harvest continues after first harvest and head diameter is no longer measured.                                                                                                                                                                                                                                                          |
| End of harvest period    | 501-590 | Beginning of flower emergence, development pattern<br>varies by variety. Heads become unmarketable. 501 =<br>branches of inflorescence begin to elongate, 550 = 50%<br>flowering 590 = 90% flowering                                                                                                                                    |

#### BRASSICACEAE

BROCCOLI



100: Cotyledons completely unfolded



107: 7 true leaves



402: Head initiation



500: Harvest



103: 4 true leaves unfolded



401: Cupping

![](_page_16_Picture_18.jpeg)

500: Head development

![](_page_16_Picture_20.jpeg)

500: Early flowering

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

Transplant

Cupping

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_21_Figure_1.jpeg)

# **Diversity in Horticultural Systems**

# Bare groundDirect seedPlastic mulchTransplant

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

# Vegetable models

Priority crops ID'd by growers (number of varieties)

Root Crops (7)

- Carrot (3)
- Parsnip (4)

# Brassicas (15)

- Broccoli (4)
- Cabbage (6)
- Cauliflower (3)
- Kale (2)
- Leafy crops (7)
  - Spinach (4)
  - Lettuce (3)

## Fruiting Crops (34)

- Snap beans (3)
- Tomato (5)
- Summer squash (5)
- Cucumber (4)
- Sweet pepper (7)
- Winter squash (4)
- Sweet corn (6)
- 20 crop models by June 2016
  50 crop models by Mar 2017

### Data collection & model development

Data sets: 1 data set = crop development observations paired with daily max/min temperature records:

- 8-10 data sets to verify thresholds for a crop
- 4-6 data sets to verify thermal time to maturity for a variety

## Crop modeling: lowest %CV

| Template for lowest CV analysis of Tlow |                    |            |             |            |      |  |  |  |  |  |  |
|-----------------------------------------|--------------------|------------|-------------|------------|------|--|--|--|--|--|--|
| Variety:                                | ARCADIA Transplant |            |             |            |      |  |  |  |  |  |  |
| start GS:                               | Transplant         |            |             |            |      |  |  |  |  |  |  |
| End GS:                                 | Early flower       |            |             |            |      |  |  |  |  |  |  |
|                                         |                    |            |             |            |      |  |  |  |  |  |  |
| Year                                    | Farm               | Date begin | True leaves | Date end   | Days |  |  |  |  |  |  |
| 2014                                    | NWREC              | 7/28/2014  | 3 tl        | 10/12/2014 | 76   |  |  |  |  |  |  |
| 2014                                    | MSF                | 5/3/2014   | 2 tl        | 8/1/2014   | 90   |  |  |  |  |  |  |
| 2014                                    | Thistledown        | 7/2/2014   | 4tl         | 9/24/2014  | 84   |  |  |  |  |  |  |
| 2014                                    | OSU Veg Farm       | 7/22/2014  | 2 tl        | 10/15/2014 | 85   |  |  |  |  |  |  |
| 2014                                    | Thistledown (a)    | 7/25/2014  | 3 tl        | 10/19/2014 | 86   |  |  |  |  |  |  |
| 2013                                    | 47th Ave Luscher   | 5/14/2013  | 2 tl        | 8/13/2013  | 91   |  |  |  |  |  |  |
| 2015                                    | NWREC              | 6/12/2015  | 3tl         | 9/1/2015   | 81   |  |  |  |  |  |  |
| 2015                                    | OSU Veg Farm       | 8/6/2015   | 4tl         | 11/5/2015  | 91   |  |  |  |  |  |  |
|                                         |                    |            |             |            |      |  |  |  |  |  |  |

|         | LOWER Threshold with Tupp = 72. Calculation method single sine, horizontal cutoff |        |        |        |        |        |        |        |        |        |        |        |
|---------|-----------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | 28                                                                                | 30     | 32     | 34     | 36     | 38     | 40     | 42     | 44     | 46     | 48     | 50     |
|         | 2872                                                                              | 2718   | 2564   | 2410   | 2256   | 2102   | 1948   | 1794   | 1640   | 1486   | 1334   | 1184   |
|         | 3136                                                                              | 2954   | 2772   | 2590   | 2408   | 2226   | 2044   | 1862   | 1681   | 1500   | 1322   | 1150   |
|         | 3172                                                                              | 3002   | 2832   | 2662   | 2492   | 2322   | 2152   | 1982   | 1813   | 1643   | 1476   | 1310   |
|         | 3100                                                                              | 2928   | 2756   | 2584   | 2412   | 2240   | 2068   | 1896   | 1724   | 1555   | 1389   | 1226   |
|         | 3112                                                                              | 2938   | 2764   | 2590   | 2416   | 2242   | 2068   | 1894   | 1722   | 1551   | 1383   | 1220   |
|         | 3086                                                                              | 2902   | 2718   | 2534   | 2350   | 2166   | 1982   | 1798   | 1616   | 1435   | 1258   | 1087   |
|         | 3169                                                                              | 3005   | 2841   | 2677   | 2513   | 2349   | 2185   | 2021   | 1857   | 1693   | 1529   | 1366   |
|         | 2968                                                                              | 2784   | 2600   | 2416   | 2233   | 2049   | 1866   | 1685   | 1507   | 1333   | 1167   | 1007   |
|         |                                                                                   |        |        |        |        |        |        |        |        |        |        |        |
|         |                                                                                   |        |        |        |        |        |        |        |        |        |        |        |
| Mean    | 3076.9                                                                            | 2903.9 | 2730.9 | 2557.9 | 2385.0 | 2212.0 | 2039.1 | 1866.5 | 1695.0 | 1524.5 | 1357.3 | 1193.8 |
| SD      | 104.68                                                                            | 102.15 | 100.65 | 100.25 | 100.73 | 102.49 | 105.05 | 108.07 | 111.19 | 113.91 | 115.33 | 115.38 |
| % CV    | 3.40                                                                              | 3.52   | 3.69   | 3.92   | 4.22   | 4.63   | 5.15   | 5.79   | 6.56   | 7.47   | 8.50   | 9.67   |
| CV Diff | 0.12                                                                              | 0.17   | 0.23   | 0.30   | 0.41   | 0.52   | 0.64   | 0.77   | 0.91   | 1.02   | 1.17   |        |

## Supports broccoli thresholds 32/70F

![](_page_27_Figure_1.jpeg)

## Thermal time to maturity

| Transplanted broccoli 32/70F, SSHCO | 50% head initiation | First harvest          | Early<br>flowering | Accuracy<br>(± days) |
|-------------------------------------|---------------------|------------------------|--------------------|----------------------|
| Arcadia (TP)                        | 1674                | 2281                   | 2672               | 2.5                  |
| Green Magic (TP)                    | 1458                | 2103                   | 2456               | 4.1                  |
| Emerald Pride (TP)                  | 1565                | 2151                   | 2518               | 6.4                  |
| Imperial (TP)                       | 1753                | 2383                   | 2688               | 4.6                  |
|                                     | i                   | ± 3-6 days<br>with DDs |                    |                      |

± 15 days in catalogs for Arcadia

## Thermal time to maturity

| Cucumber<br>50/90F, SSHCO | Туре     | 2 true<br>leaves | Early<br>flowering | First<br>harvest | Accuracy<br>(± days) |
|---------------------------|----------|------------------|--------------------|------------------|----------------------|
| Cobra (DS)                | Slicing  | 339              | 665                | 964              | 2.5                  |
| Marketmore-76 (DS)        | Slicing  | 364              | 784                | 1211             | 1.1                  |
| Marketmore-76 (TP)        | Slicing  | -                | 344                | 805              | 1.9                  |
| Dasher II (DS)            | Slicing  | 365              | 731                | 1060             | 1.8                  |
| Zapata (DS)               | Pickling | 380              | 688                | 984              | 2.7                  |
| Extreme (DS)              | Pickling | 366              | 692                | 946              | 1.2                  |
| Supremo (DS)              | Pickling | 366              | 677                | 981              | 0.8                  |

~12 days diff.  $\pm$  1-3 days

between accuracy

varieties

# Using Croptime

# Using Croptime

1. Search for Croptime <u>http://smallfarms.oregonstate.edu/croptime</u>

| Oregon Sta<br>UKIVEES | sma            | all Far      | ms             |                    |               |       |
|-----------------------|----------------|--------------|----------------|--------------------|---------------|-------|
| Home                  | About Us       | Crops        | Grains         | Livestock          | Pastures      | Soils |
| Home                  |                |              |                |                    |               |       |
| CROP                  | TIME           |              |                |                    |               |       |
| Using                 | Croptime:      |              |                |                    |               |       |
| • Cropt               | ime Calculator | o to this si | te to use Crop | time vegetable and | l weed models |       |

Quick Guide: tri-fold pdf brochure with step-by-step guide to using Croptime

![](_page_32_Figure_0.jpeg)

#### MODEL INPUTS

| Model species/general links        | broccoli-Arcadia [Arcadia]            |
|------------------------------------|---------------------------------------|
| Туре                               | crop                                  |
| Model source/other links           | Andrews etal 2015                     |
| Calculation method                 |                                       |
| Lower threshold                    | 32 degrees Fahrenheit                 |
| Upper threshold                    | 72 degrees Fahrenheit                 |
| Directions for starting/BIOFIX     | date of transplant at 2-4 true leaves |
| Starting date(s)                   | 4-1,5-1,6-1,7-1 2015                  |
| Ending date                        | 12-1                                  |
| Model validation status            | new model-not yet validated           |
| Region of known use                | W. Oregon                             |
| Short day critical day length (hr) | 12.0                                  |
|                                    | 12.0                                  |

#### **EVENTS TABLE**

| DDs after transplant: | Model Event               |
|-----------------------|---------------------------|
| 5                     | transplanted - 2-4 leaves |
| 1762                  | 50% head initiation       |
| 2344                  | first harvest             |
| 2734                  | early flowering           |

|       |     | T (D |       |        |           |                  | Cum     |           |                           |
|-------|-----|------|-------|--------|-----------|------------------|---------|-----------|---------------------------|
| Da    | ate | Te   | mp/P  | recip  | DD        | Day length       | DD      |           | Crop events               |
| 7     | 5   |      | 7     | 7      |           |                  |         | 75        |                           |
| Month | Dav | Max  | Min   | Procin |           | Day length (br)  | QA +    | •         | Starting 4-1              |
| Nonun | Day | Wax  | WIIII | Frecip | DDS TOUAY | Day length (III) | Notes   | Cumu. DDs | Model Events              |
| 4     | 1   | 53.0 | 40.1  | 0.10   | 14.6      | 13.1             |         | 15        | transplanted - 2-4 leaves |
| 5     | 1   | 73.8 | 45.6  | 0.00   | 27.5      | 14.6             |         | 612       |                           |
| 6     | 1   | 62.5 | 53.9  | 0.21   | 26.2      | 15.8             |         | 1458      |                           |
| 6     | 11  | 81.4 | 49.9  | 0.00   | 31.4      | 16.0             |         | 1780      | 50% head initiation       |
| 6     | 28  | 83.6 | 66.3  | 0.00   | 38.6      | 16.0             |         | 2351      | first harvest             |
| 7     | 1   | 95.4 | 57.9  | 0.00   | 36.2      | 16.0             |         | 2461      |                           |
| 7     | 9   | 85.2 | 59.8  | 0.00   | 36.2      | 15.9             |         | 2751      | early flowering           |
| 7     | 14  | 83.4 | 57.6  | 0.00   | 35.1      | 15.8             |         | 2930      |                           |
| 7     | 22  | 72.1 | 53.1  | 0.00   | 30.6      | 15.5             |         | 3205      |                           |
| 7     | 26  | 72.7 | 55.6  | 0.03   | 32.1      | Scroll           | right f | for other |                           |
| 8     | 8   | 79.7 | 56.2  | 0.00   | 34.0      | Jeron            |         |           |                           |
| 8     | 19  | 97.6 | 59.7  | 0.00   | 36.9      | pla              | anting  | dates     |                           |
| 8     | 20  | 81.1 | 58.4  | 0.00   | 35.2      | 14.3             |         | 4214      |                           |
| 9     | 7   | 74.5 | 52.2  | 0.00   | 31.0      | 13.3             |         | 4787      |                           |
| 9     | 20  | 77.7 | 52.6  | 0.00   | 32.0      | 12.7             |         | 5190      |                           |

| 2 <sup>nd</sup> planting |     |           | <sup>nd</sup> planting    | 3         | <sup>rd</sup> planting    | 4 <sup>th</sup> planting |                           |  |
|--------------------------|-----|-----------|---------------------------|-----------|---------------------------|--------------------------|---------------------------|--|
|                          |     |           |                           |           |                           |                          |                           |  |
| Month                    | Dav |           | Starting 5-1              |           | Starting 6-1              |                          | Starting 7-1              |  |
| wonth                    | Day | Cumu. DDs | Model Events              | Cumu. DDs | Model Events              | Cumu. DDs                | Model Events              |  |
| 4                        | 1   |           |                           |           |                           |                          |                           |  |
| 5                        | 1   | 28        | transplanted - 2-4 leaves |           |                           |                          |                           |  |
| 6                        | 1   | 873       |                           | 26        | transplanted - 2-4 leaves |                          |                           |  |
| 6                        | 11  | 1195      |                           | 348       |                           |                          |                           |  |
| 6                        | 28  | 1766      | 50% head initiation       | 919       |                           |                          |                           |  |
| 7                        | 1   | 1877      |                           | 1030      |                           | 36                       | transplanted - 2-4 leaves |  |
| 7                        | 9   | 2166      |                           | 1319      |                           | 326                      |                           |  |
| 7                        | 14  | 2346      | first harvest             | 1499      |                           | 505                      |                           |  |
| 7                        | 22  | 2621      |                           | 1774      | 50% head initiation       | 781                      |                           |  |
| 7                        | 26  | 2753      | early flowering           | 1906      |                           | 913                      |                           |  |
| 8                        | 8   | 3204      |                           | 2357      | first harvest             | 1363                     |                           |  |
| 8                        | 19  | 3594      |                           | 2747      | early flowering           | 1754                     |                           |  |
| 8                        | 20  | 3630      |                           | 2783      |                           | 1789                     | 50% head initiation       |  |
| 9                        | 7   | 4202      |                           | 3355      |                           | 2362                     | first harvest             |  |
| 9                        | 20  | 4606      |                           | 3758      |                           | 2765                     | early flowering           |  |

|            | 2         | nd planting    |            |           | B <sup>rd</sup> planting | 4 <sup>th</sup> planting |                |  |
|------------|-----------|----------------|------------|-----------|--------------------------|--------------------------|----------------|--|
|            |           | Starting 5-1   |            |           | Starting 6-1             |                          | Starting 7-1   |  |
| Month Day  | Cumu, DDs | Model Ev       | /ents      | Cumu, DDs | Model Events             | Cumu, DDs                | Model Events   |  |
| TP da      | tes       | transplanted - | 2-4 leaves | See       | d catalogs es            | timate                   | 63-94 DTM      |  |
| <b>U</b> 1 | 010       |                |            |           | In W OR we               | e saw 6                  | 56-103 DTM     |  |
| Apr 1      | = 88 D    | MT             | sitistism  | 010       |                          |                          |                |  |
|            | 4077      |                | nuation    | 919       |                          |                          |                |  |
| 7 1        | 1877      |                |            | 1030      | Dogroo-da                | v mod                    |                |  |
|            |           |                |            | 1319      | Degree-ua                | y mou                    | eis use iocai  |  |
| IVIay 1    | L = /4 l  |                | /est       | 1499      | temperature              | data                     | forecasts or   |  |
| 7 26       | 0750      | oorly flow     | oring      | 1774      | temperature              | . aata,                  |                |  |
| 1          |           |                | ening      | 1906      | historical a             | verage                   | es to predict  |  |
| Jun I      | = 68 D    | I IVI          |            | 2307      |                          |                          |                |  |
|            |           |                |            | 2747      | harvest                  | t withir                 | n a few days   |  |
| Jul 1 -    | - 60 חד   | -Ν <i>Δ</i>    |            | 2700      |                          | 2362                     | first harvost  |  |
| JULT -     | - 00 01   | IVI            |            | 3300      |                          | 2302                     | nist naivest   |  |
| ·          |           |                |            | 3/08      |                          | 2765                     | early nowering |  |

#### Transplanted Arcadia brocolli Aurora, OR, 2011-2015

![](_page_37_Figure_1.jpeg)

# Weed models (Heinrich & Peachey)

# Croptime weed models

Weed models can help farmers answer the following questions:

When can I stop cultivating?

Do I need to send in a crew to hand weed before harvest to prevent seed set?

Should I remove weeds from field?

Can the crew just focus on specific weeds?

![](_page_39_Picture_6.jpeg)

# Farmer's choice

![](_page_40_Picture_1.jpeg)

#### Lambsquarter

![](_page_40_Picture_3.jpeg)

#### Hairy nightshade

![](_page_40_Picture_5.jpeg)

![](_page_40_Picture_6.jpeg)

Pigweed

#### Crabgrass

# Croptime weed models reduce uncertainty

Do you think the seeds in this flower head are viable? Grower #1 - **35-50%** Grower #2 - **None** 

Lab results – ~50% viable

![](_page_41_Picture_3.jpeg)

# How to use weed models

Identify weed & emergence date

![](_page_42_Picture_2.jpeg)

Input into model Estimate of first germinable seed

![](_page_43_Figure_0.jpeg)

# The model

- Model most appropriate for late April through early July plantings
  - Influence of photoperiod on growth not considered
- Start date = cotyledon
  - Hard to identify some weeds at cotyledon stage
  - Use first flush of weeds after cultivation as start date?
- Combine with in-field observations

# Output

| Month | Dav | Starting 6-1                   |               |  |  |  |
|-------|-----|--------------------------------|---------------|--|--|--|
| wonth | Day | Model Events                   |               |  |  |  |
| 6     | 1   | cotyledon present              |               |  |  |  |
| 6     | 7   | 2 leaves present               |               |  |  |  |
| 6     | 13  | 4-5 leaves present             |               |  |  |  |
| 6     | 20  | 6-7 leaves present             |               |  |  |  |
| 6     | 28  | first flowering                |               |  |  |  |
| 7     | 26  | lower 95% CI first viable seed | Low risk      |  |  |  |
| 7     | 31  | average first viable seed      | Moderate risk |  |  |  |
| 8     | 4   | upper 95% CI first viable seed | High risk     |  |  |  |

**Avoid this!** Reduce future weed pressure by using weed models in conjunction with crop models to minimize the risk of seed set occurring before harvest

![](_page_45_Picture_1.jpeg)

7-month climate forecasts (Coop)

# **Forecast Options**

- Uses recorded temps up to the day before a model is run
- Uses 7-day forecasts
- Long-term forecast options:
  - NEW 7-month seasonal climate forecast
  - 10-year average
  - 30-year average
  - Same as last year
  - Same as the year before

| broccoli-Arcadia [Arcadia] - Degree Day Models from OSU - version 6.01 - Mozilla Fi                                                 | refox O O O                                             |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
| 🔊 TDS 🖉 brocco 🗙 😻 Edit Andr 🔯 Data Coll 🔯 Extensio                                                                                 | Phenolog 🛛 🕂                                            |  |  |  |  |  |  |  |
| ♦ Ø uspest.org/dd/model1?sta=FNWO3&mdt=veg&spp=b ♥ C SU Soars                                                                       | → » ≡                                                   |  |  |  |  |  |  |  |
| Online Phenology and Degree-day Mod<br>for agricultural and pest management decision making in t                                    | dels<br>ne US                                           |  |  |  |  |  |  |  |
| Weather station map: pan, zoom and click on pin (red pin shows current location)<br>orr<br>Map Satellite<br>20                      |                                                         |  |  |  |  |  |  |  |
| rt Tidewater                                                                                                                        |                                                         |  |  |  |  |  |  |  |
| Siuslaw<br>National Forest<br>Fisher<br>Harrisburg                                                                                  | Siuslaw 33 Alsea<br>National-Fores 34 Alsea<br>Monroe + |  |  |  |  |  |  |  |
| Junct In City                                                                                                                       |                                                         |  |  |  |  |  |  |  |
| Map data ©2016 Google 10 km Terms of Use   Report a ma<br>CORVALLIS OR station: FNWO3 RAWS elev: 308 ft lat/long: 44.4181 -123.3253 | ip error                                                |  |  |  |  |  |  |  |
| A broccoli-Arcadia                                                                                                                  |                                                         |  |  |  |  |  |  |  |
| [Arcadia]<br>Andrews et al 2016<br>Model category: CROPTIME models V                                                                |                                                         |  |  |  |  |  |  |  |
| see also "CROPTIME Home Page" for more info. on scheduling vegetable plantings Model: broccoli-Arcadia [Arcadia] Andrews et al 2016 |                                                         |  |  |  |  |  |  |  |
| Start (up to 4 start dates - based on: date of transplant at 2-4 true leaves):                                                      |                                                         |  |  |  |  |  |  |  |
| e 1. Jan v 10 v 2. Jan v 1 v 3. Jan v 1 v 4. Jan v 1 v 2016 v                                                                       |                                                         |  |  |  |  |  |  |  |
| Forecast type: after 7day use 10 year averages                                                                                      |                                                         |  |  |  |  |  |  |  |
| Output: Conde after 7day use 10 year averages                                                                                       |                                                         |  |  |  |  |  |  |  |
| after 7day use extended seasonal (7-month) forecast                                                                                 |                                                         |  |  |  |  |  |  |  |
| Model preview section (first start date only): show 3 v future events:                                                              |                                                         |  |  |  |  |  |  |  |
| Date Days from today DDs Event                                                                                                      |                                                         |  |  |  |  |  |  |  |
| If     Jan 10     40 days ago     5     transplanted - 2-4 leaves                                                                   |                                                         |  |  |  |  |  |  |  |
| Apr 27 68 days away 1674 50% head initiation                                                                                        |                                                         |  |  |  |  |  |  |  |
| May 24 95 days away 2281 first harvest                                                                                              |                                                         |  |  |  |  |  |  |  |
| Jun 8 110 days away 2672 early flowering                                                                                            |                                                         |  |  |  |  |  |  |  |
| 6<br>6<br>7 [Home] (user survey) [Intro] (US State/Network Index) [DD Man Calculator) [Links]                                       |                                                         |  |  |  |  |  |  |  |

![](_page_48_Picture_0.jpeg)

#### broccoli-Arcadia [Arcadia] crop model of <u>Andrews et al 2016</u>

Output from <u>uspest.org/wea</u> insect degree-day/phenology model program: Heat Units and predictions of key events from daily weather data

#### MODEL INPUTS

| Viodel species/general links   | proccoll-Arcadia (A  | Arcadiaj    |         |             |              |         |           |              | ΙΤΡΙΙΤ    |
|--------------------------------|----------------------|-------------|---------|-------------|--------------|---------|-----------|--------------|-----------|
| Addal source/other links       | Androws of al 201    | 6           |         |             |              |         |           |              |           |
| Calculation method             | single sine curve    | 0           |         |             |              |         | \\/ NIN/  |              |           |
| awar thrashold                 | 22 degrees Fabro     | aboit       |         |             |              |         | VV/ INIV  |              |           |
| Lower threshold                | 32 degrees Fahrer    | nneit       |         |             |              |         |           |              |           |
| Upper threshold                | 70 degrees ⊢anrer    | nneit       |         |             |              |         |           |              |           |
| Directions for starting/BIOFIX | date of transplant a | at 2-4 true | leaves  |             |              |         |           |              |           |
| Starting date(s)               | 1-10 2016            |             |         |             |              |         |           |              |           |
| Ending date                    | 12-1                 |             |         |             |              |         | 13.0      |              | 500       |
| Model validation status        | new model-not yet    | fully valid | ated    |             |              |         | 21.0      |              | 521       |
| Region of known use            | W. Oregon            |             |         |             |              |         | 23.5      |              | 544       |
| Extended forecast type         | After 7 days, use 7  | '-month NN  | /ME bas | sed seasona | al climate f | orecast | 18 5      |              | 563       |
|                                |                      | 2           | 17      | 63.0        | 46.0         | 0.04    | 22.5      |              | 585       |
|                                |                      | 2           | 10      | 51 O        | 43.0         | 0.04    | 15.0      |              | 600       |
|                                |                      | 2           | 10      | 51.0        | 45.0         | 0.55    | 15.0      | Ev En        | 000       |
|                                |                      | 2           | 19      | 49.7        | 43.3         | 0.246   | 14.5      | forecast     | 615       |
|                                |                      | 2           | 20      | 53.9        | 34.5         | 0.042   | 12.2      | <u>Fx Fn</u> | 627       |
|                                |                      | 2           | 21      | 49.7        | 31.8         | 0.095   | 8.8       | <u>Fx Fn</u> | 636       |
|                                |                      | 2           | 22      | 52.1        | 31.7         | 0.006   | 9.9       | Fx Fn        | 646       |
|                                |                      | 2           | 23      | 62.7        | 33.2         | 0.00    | 15.9      | Fx Fn        | 662       |
|                                |                      | 2           | 24      | 55.4        | 38.6         | 0.165   | 15.0      | NMME         | 677       |
|                                |                      | 2           | 25      | 55.6        | 38.7         | 0.163   | 15.2      | NMME         | 692       |
|                                |                      | 2           | 26      | 55.8        | 38.8         | 0.162   | 15.3      | NMME         | 707       |
|                                |                      | 2           | 27      | 56.0        | 38.9         | 0.16    | 15.4      | NMME         | 723       |
|                                |                      | 2           | 28      | 56.2        | 39.0         | 0.158   | 15.6      | NMME         | 738       |
|                                |                      | 2           | 29      | 56.2        | 39.1         | 0.158   | 15.7      | NMME         | 754       |
|                                |                      | Month       | Dav     | Max         | Min          | Precip  | DDs Today | QA +         |           |
|                                |                      | Monul       | Duy     | Max         |              | riccip  | DDS Today | Notes        | Cumu. DDs |

![](_page_49_Figure_0.jpeg)

Is recent climate wellpredicted by 30-year Normals? Many studies linking sea surface temperatures to future climate

Concurrent NIFA funded research<sup>+</sup> used NOAA ensemble extended weather/climate forecasts (NMME)

Current & Forecast El Nino is a major part of the forecast

**†** USDA NIFA CPPM ARDP funded project

## 2016 HARVEST FORECAST COMPARISONS

| June 1    | , 2016 tran | splant  | Aug 1, 2016 transplant |          |         |  |
|-----------|-------------|---------|------------------------|----------|---------|--|
| NMME      | 8/12/16     | 72 days | NMME                   | 10/16/16 | 76 days |  |
| 2015      | 8/11/16     | 71 days | 2015                   | 10/17/16 | 77 days |  |
| 2014      | 8/13/16     | 73 days | 2014                   | 10/12/16 | 72 days |  |
| 10-yr ave | 8/15/16     | 75 days | 10-yr ave              | 10/20/16 | 80 days |  |
| 30-yr ave | 8/15/16     | 75 days | 30-yr ave              | 10/20/16 | 80 days |  |

# Thermal time & nitrogen release (Sullivan)

## Plant-available Nitrogen Released from Soil Organic Matter

![](_page_53_Figure_1.jpeg)

## Substrates (pools of N mineralization)

- **1. Very rapid N mineralization** from uncomposted high N organic inputs (most manures, legume cover crops, and specialty products)
- **2. Baseline N mineralization** from relatively stable soil organic matter.
- **3. Enhanced N mineralization from "active" soil organic matter** (residue of organic inputs for last 3-10 yr).

# Specialty organic fertilizers and legume cover crops

- High N concentration (>3% N in dry matter)
- Rapidly release plant-available N in the first 4 weeks after application
- Supply plant-available N even when soil temperatures are cool in spring or fall

#### **PAN** accumulation

#### Baseline (soil only) vs. soil with cover crop residue

Lab incubation in moist silt loam soil (72 °F)

A. Garrett thesis, 2009

![](_page_56_Figure_4.jpeg)

![](_page_56_Picture_5.jpeg)

## "Organic Fertilizer Calculator" Estimates of plant-available N (PAN)

| Fresh                | Example                   | Fresh            | PAN          | PAN          |
|----------------------|---------------------------|------------------|--------------|--------------|
| Amendment<br>total N |                           | Amendment<br>C:N | 28 days      | full season  |
| % dry wt.            |                           | Approx.          | % of total N | % of total N |
| 1                    | Solid manure<br>w/bedding | 35               | < 0          | 0            |
| 2                    | Dairy solids              | 18               | 0            | 15           |
| 4                    | Broiler litter            | 9                | 30           | 45           |
| 6+                   | Specialty products        | less than 6      | 60           | 75           |

## Substrates (pools of N mineralization)

- 1. Very rapid N mineralization from uncomposted high N organic inputs (most manures, legume cover crops, and specialty products)
- **2. Baseline N mineralization** from relatively stable soil organic matter.
- **3. Enhanced N mineralization from "active" soil organic matter** (residue of organic inputs for last 3-10 yr).

### **Typical Willamette Valley soil**

3% organic matter (0-12 inches) Contains a large amount of total N But only a small fraction is mineralized each year

#### Conventional

total soil N: 6200 lb N/acre

![](_page_59_Figure_4.jpeg)

#### **Mineralization measurements**

#### conventional sweet corn

Willamette Valley, OR 2011-13. sandy loam, silt loam, silty clay loam soils

| Crop N uptake    |                                                                                              |  |
|------------------|----------------------------------------------------------------------------------------------|--|
| lb/acre          | 88*                                                                                          |  |
|                  |                                                                                              |  |
| Soil             |                                                                                              |  |
| %                | 0.15                                                                                         |  |
| %                | 2.9                                                                                          |  |
| lb/acre          | 5220                                                                                         |  |
|                  |                                                                                              |  |
| Soil N           |                                                                                              |  |
| mineralized/crop |                                                                                              |  |
| % of soil N      | 1.7                                                                                          |  |
|                  | Crop N uptake<br>Ib/acre<br>Soil<br>%<br>Ib/acre<br>Soil N<br>mineralized/cro<br>% of soil N |  |

## Substrates (pools of N mineralization)

- **1. Very rapid N mineralization** from uncomposted high N organic inputs (most manures, legume cover crops, and specialty products)
- **2. Baseline N mineralization** from relatively stable soil organic matter.
- **3. Enhanced N mineralization from "active" soil organic matter** (residue of organic inputs for last 3-10 yr).

CropTime Project (Andrews et al., in progress) Testing equation for predicting temperature-adjusted net N mineralization from soil organic matter decomposition\* = N min = Soil N x [1-exp((-k)(TF))]

Where:

Nmin = PAN produced from soil organic matter (lb/acre/day) Soil N = soil N (lb/acre, 0-12 inches)

K = daily OM decomposition rate, 0.0002 per day at 77 °F

![](_page_62_Figure_4.jpeg)

on  $Q_{10}$ , equal to 1.0 at 77 °F

\* Based on Gilmour, 2009. Soil Sci. Soc. Am. J. 73:328-330

# Soil N mineralization vs. N uptake by conventional sweet corn crop

Corvallis, OR

![](_page_63_Figure_2.jpeg)

2012 Corvallis with 4 inch soil temp K for soil OM decomp = 0.0002 per day at 25 C Soil OM = 3% with average TFAC = 0.71

### Hypothesized outcome of "soil building"

- Willamette Valley (OR)
- When soil OM increased from 3 to 4% (long-term)
- soil N mineralization rate doubles

![](_page_64_Figure_4.jpeg)

### Baseline N from CropTime can serve as comparison for your June soil nitrate-N values **Example:**

![](_page_65_Figure_1.jpeg)

![](_page_66_Picture_0.jpeg)

![](_page_66_Picture_1.jpeg)

# Croptime

## online vegetable scheduling

http://smallfarms.oregonstate.edu/croptime

Nick Andrews<sup>+</sup>, Heidi Noordijk, Len Coop, Aaron Heinrich and Dan Sullivan <sup>+</sup>OSU Small Farms Extension North Willamette Research & Extension Center <u>nick.andrews@oregonstate.edu</u>

Other collaborators Jim Myers Heather Stoven Jeremy Cowan (WSU)

503-913-9410